Name	Hour Do	ate
------	---------	-----

Unit 8: Ionic Compounds *Notes* and *Practice*

What is BONDING ?		
	that hold atoms together to	form compounds.
Positive Ion Formation		
• tend to	valence e	3p
• Acharg	ed ion is called a	1 1
• Ex. Na →	Cataion	$ \begin{array}{c c} \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \downarrow$
o will lose		2s
o Na⁺ →		A I
NEGATIVE ION FORMATION	is nozzitively charged	1s
• tend to	valence e	3p
• Acharged	d ion is called an	-
• Ex. S →		
o will gain		2p
o S²-→		2s
IONIC SIZE		1
Cations are always	than the atoms from	1s
which they formed o Fewer electrons so the	he protons can pull the electrons	closer
	than the atoms from whice the same number of protons	ch they form
Ionic Bonds		
• atoms will	electrons to	atoms, causing
both to become ions.		
• Ani	s the force of attraction that hold	ls
to	gether in	·

FORMULAS FOR IONIC COMP	OUNDS	
The chemical formula for an ior	nic compound is called a	and
represents the	of the ions in a comp	ound.
Ionic compounds are	(charge =	=)!!
• The tell ch	nemists how many of e	each
are present in the compound.		
o Example: means	aluminum atoms and sulfu	r atoms in one
"formula unit".		
How to write ionic formulas:		
1. Write the fo	or each ion and its	_
2 the char	ges with	
o Total charge of	must = total charge o	of
o "Criss-cross" or "swap"		
3. Re-write the	_ without any	
 Metal (cation) is ALWAYS 	and the nonmental (an	ion) is
Write the formula for1. Calcium iodide	2. Potassium pho	sphide
1. Calcion loaide	2. 1 01assion1 pno	3pi iide
Naming Ionic Compounds		
 Name the metal (cation) and no 	ame the nonmetal (anion), changing	g the ending to "ide"
Name the following ionic comp	oounds	
1. NaF	2. Al ₂ O ₃	
TRANSITION METAL IONIC CO	OMPOUNDS	
Transition metals form	catio	ns.
Different result	ts in different ar	nd different
·		
• A	is used to indicate the	of a metal
that forms multiple cations.		
o Iron is commonly found as b	oth, which is called	and,
called		
o is called	& is called	·

• Write the formula for:

1. Iron (II) Oxide

2. Cobalt (II) lodide

3. Vandium (III) Oxide

Naming

 You must write a roman numeral in _____ after the of the to show the charge on the _____. Exceptions: o ______ is always a _____ ion **DON'T need Roman Numerals** o ______ is always a _____ ion o _____ and ____ can **MUST have Roman Numerals** be a _____ or ____ ion. **MEMORIZE THEM!!!!** Name the following compounds... 1. NiCl₂ 4. Co₃P₂ 2. CuS 5. PbO₂ 3. Cu₃N Determine the cation and anion of the formula. Does the cation **YES** have only one NO charge? Write the name of the Write the name of the cation cation, then the name of followed by a roman numeral to represent the charge. Next the anion. write the name of the anion.

POLYATOMIC ION COMPOUNDS

 Polyatomic ions are. 	•	Pol	yatomic	ions	are.
--	---	-----	---------	------	------

•	Charge applies to the	
---	-----------------------	--

•	Acts as an	ion in a compound

Polyatomic Ions					
Name	Formula	Particle Diagram	Name	Formula	Particle Diagram
Ammonium		(B)	Nitrate		
Carbonate		0 2 ·	Nitrite		
Chlorate		Ca	Phosphate		3
Cyanide			Sulfate		2· s
Hydroxide			Sulfite		2

Formula Writing

•	NEVER .	subscripts of the atoms	the	pol	У
---	---------	-------------------------	-----	-----	---

NEVER ______ the poly

•	If	poly is needed, place parentheses
		the ion and a subscript

• Example: NH_4^+ and O^{2-} \rightarrow

Naming

• Example: NaOH →

•	, rigid	d,			
• _		as s	solids		
• C	onduct electric	ity when		(aqueo	us solution)
0	A substance v	vill conduct electr	icity if it has _		·
0	Ionic solids ha	ve a	structure,	however, when dis	solved in water ,
	the ions electricity.		_ and are mo	bile allowing the co	onduction of
 lo 	,	melti	ing and boiling	g points due to the .	
		en the (+) and (-)			
0	The	the tempe	erature, the	the f	orce of attraction
0		ions are			
		together		Melting Point (°C)	
	than larger ior	ns producing a	KBr	734	1435 1390
		attraction.	NaBr NaCl	801	1413
	Ex: KBr	vs. NaCl	MgO	2852	3600
0		charges	mae	2002	
	have a	attract	tion.		
	Ex: NaBr	vs. MgO			
		P	ractic	A	
		<u>-</u>	Idelie	<u>C</u>	
	ormulas and r that only forr		y (2 types of	atomic) ionic co	ompounds with
	•				
1. LiF _			2. lithium chl	oride	
3. BBr ₃			4. aluminum	chloride	
5. Li ₃ P _			6. beryllium f	luoride	-
7. BeO			8. Aluminum	sulfide	-
9. BCl ₃	i		10. lithium nitri	de	
11. Na ₂	S		12. boron oxid	e	
13. AIN			14. Beryllium su	ulfide	

multiple ions	pinary ionic compounds with metals that form		
15. CuCl ₂	16. copper (I) chloride		
17. Cu ₂ O	18. tin (IV) oxide		
19. Cu ₃ N	20. copper (II) nitride		
21. SnSe	22. copper (II) oxide		
23. PbF ₄	24. lead (II) fluoride		
25. PbS	26. lead (IV) sulfide		
27. Pb ₃ N ₄	28. chromium (VI) phosphide		
29. FeF ₃	30. iron (II) bromide		
31. Fe ₂ O ₃	32. lead (IV) oxide		
lonic formulas and names for io 33. NH4Cl	onic compounds containing polyatomic ions 34. beryllium chlorate		
35. LiClO ₃	36. barium nitrate		
37. BeSO ₄	38. aluminum hydroxide		
39. Ca\$O ₃	40. calcium sulfate		
41. (NH ₄) ₃ N	42. calcium phosphate		
43. NH ₄ NO ₃	44. cesium cyanide		
45.NH ₄ NO ₂	46. sodium nitrate		
47. Sr ₃ (PO ₄) ₂			
49. KCIO ₃			
	Polyatomic Ions		
Chlorate Cyanide	Nitrate Hydroxide Sulfate		

Polyatomic Ions					
Chlorate	Cyanide	Nitrate	Hydroxide	Sulfate	
ClO ₃ -	CN -	NO ₃ -	OH -	SO ₄ ²⁻	
Carbonate	Ammonium	Nitrite	Phosphate	Sulfite	
CO ₃ ²⁻	NH4 +	NO ₂ -	PO ₄ ³⁻	SO ₃ ²⁻	